

San Diego, CA, USA theCAMX.org

WE FORM HE FUTURE

Produced by

sampe

North America

Revolutionizing molding precision for aviation and urban air mobility: The power of low thermal expansion tooling in CFRTP compression forming

- Hiromichi T. Fujii^{*, 1}, Shinogo Matsumura¹, Naoki Sakaguchi¹, Haruyasu Ohno¹, Kotaro Ona¹, Jun-ichi Go², Umito Yoshioka²
- 🛛 🔹 * fujii@shst.co.jp
- Principal researcher
- ¹ Shinhokoku Material Corp.
 - ² GO-factory Co., Ltd.

新報国マテリアル株式会社 SHINHOKOKU MATERIAL CORP. September 9-12, 2024 | theCAMX.org

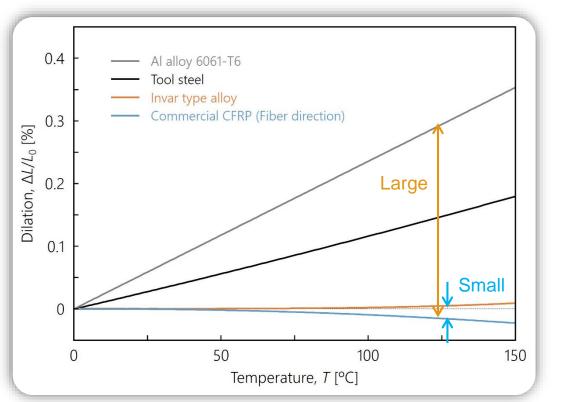
Background and motivation

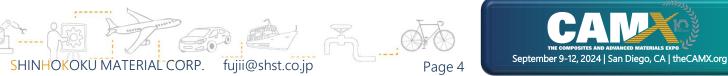
- ✓ Introduction of low thermal expansion tooling
- $\checkmark~$ Purpose and research issues
- Precision enhancement through low thermal expansion tooling
 - ✓ Achieving superior molding accuracy
 - ✓ Mechanical properties of compression-formed CFRTP components
 - \checkmark Enhancement of carbon fiber distribution

Optimizing tooling characterization for mass production of CFRTP components

- ✓ Improvement of yield strength of tooling
- Overcoming machinability challenges in low thermal expansion tooling

Summary





Thermal expansion curves obtained from Al alloy 6061, tool steel, Invar type alloy and commercial CFRP. The curve of CFRP was measured along its fiber direction.

H.T. Fujii

WEFORM FUTURE

	Invar	CFRP
Molding cycle	2000	200
Max temp. [°C]	230	190
Max load [MPa]	none	0.69
Weight	Heavy	Light
Intricate structure	Easy	Difficult
Cost	Expensive	Affordable
Master mold	Unnecessary	Graphite, Invar,

Technical challenges in next-gen CFRTP tooling

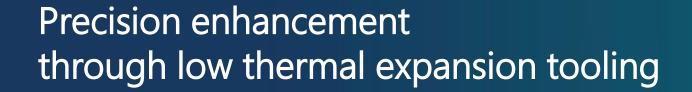
Conventional aviation	Urban air mobility			
 ✓ Large parts (Small curvature) ✓ Small batch production 	 ✓ Small parts (Complex structure) ✓ Mass production 			
Next-gen CFRTP tooling				
Dimensional stability	Accurate molding			
Near-net-shape	Complex structure			
High strength	Long tool life			

Examples of small CFRP parts with complex structure

<u>ڳھ</u>

Critical needs in urban air mobility

Market explosion	\$6.2 billion in 2030 (Required units number: 150 thousands)
Implementation goals	More than 12 cities in 2030 Air taxi for tens of thousands people per day
Required parts number	Tens of thousands per year (Equivalent to automotive industry)
Social acceptance	High-level manufacturing technology that meets the design requirements is essential
Start-ups	Joby Aviation, Volocopter, SkyDrive, Ehang Vertical Aerospace,

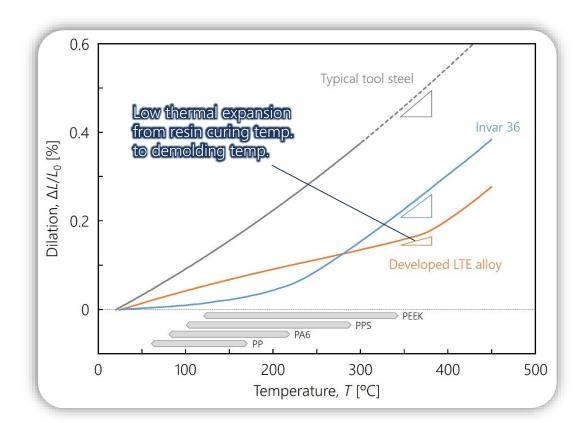

To develop mass production tooling for high-quality and high-reliability small and complex-shaped CFRTP components, towards the societal implementation of urban air mobility.

Molding accuracy	Complex shape	Mass production
Development of new low- thermal-expansion alloys	Casting and 3D printing technologies	Improvement of mechanical properties

Page 7

.....

Characteristics of low thermal expansion tooling

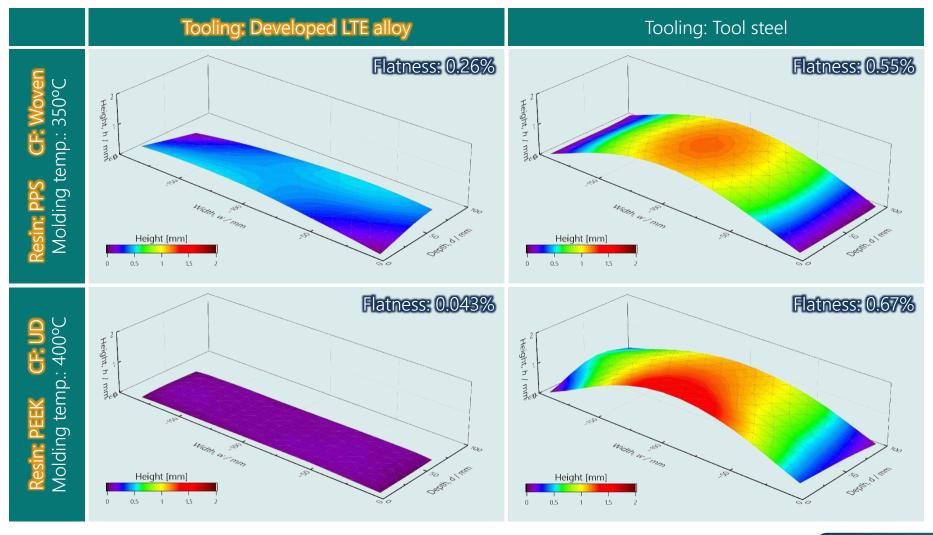

Tooling for compression forming tests

- ✓ Low thermal expansion (LTE) tooling
- \checkmark Tool steel tooling (for comparison)
- **Specimen shape**

Overview of tooling used for compression forming tests of CFRTP.

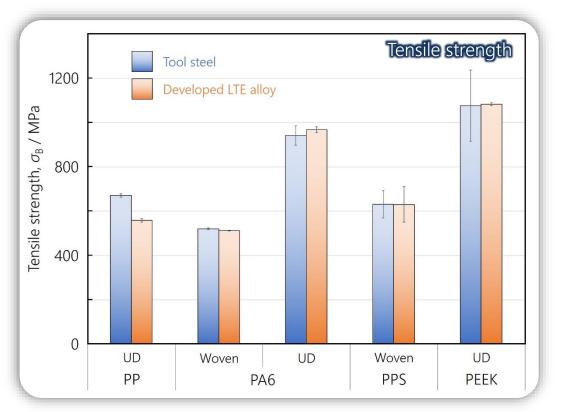
WE FORM FUFURE

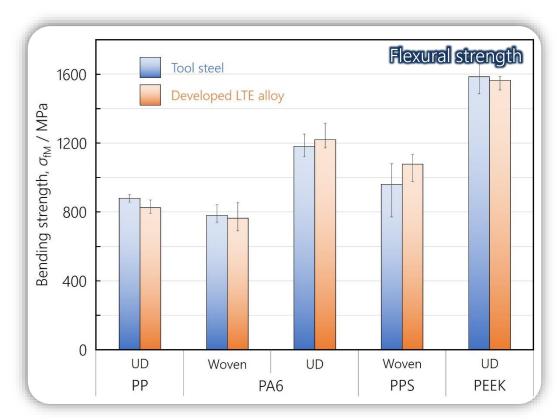
Thermal expansion curves obtained from tooling materials used for compression forming tests of CFRTP. For comparison, a curve of Invar 36 is also shown by blue line.


SHINHOKOKU MATERIAL CORP. fuiii@shst.co.ip

H.T. Fuiii

Achieving superior molding accuracy with LTE tooling


WE FORM FUELURE



Mechanical properties of CFRTP components

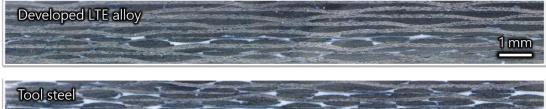
Comparison of tensile strength of CFRTP specimens using different resins and carbon fibers: Conventional tool steel and low thermal expansion tooling.

Comparison of flexural strength of CFRTP specimens using different resins and carbon fibers: Conventional tool steel and low thermal expansion tooling.

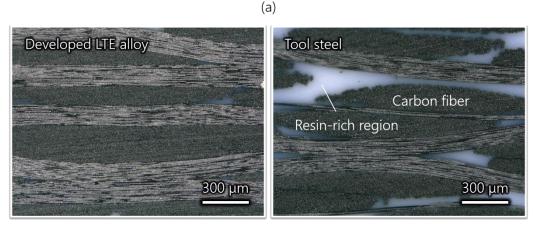
Page 11

WE FORM THEURE

H.T. Fujii SHINHOKOKU MATERIAL CORP. fujii@shst.co.jp



Enhancing CF distribution with LTE tooling

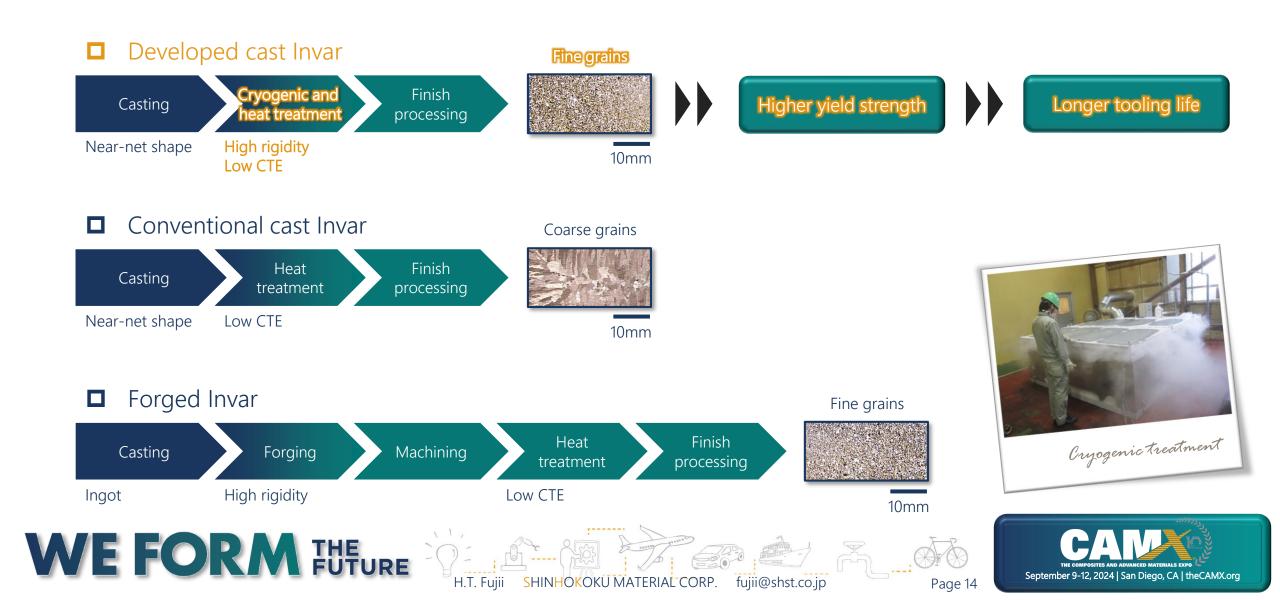


Improvement of CF density

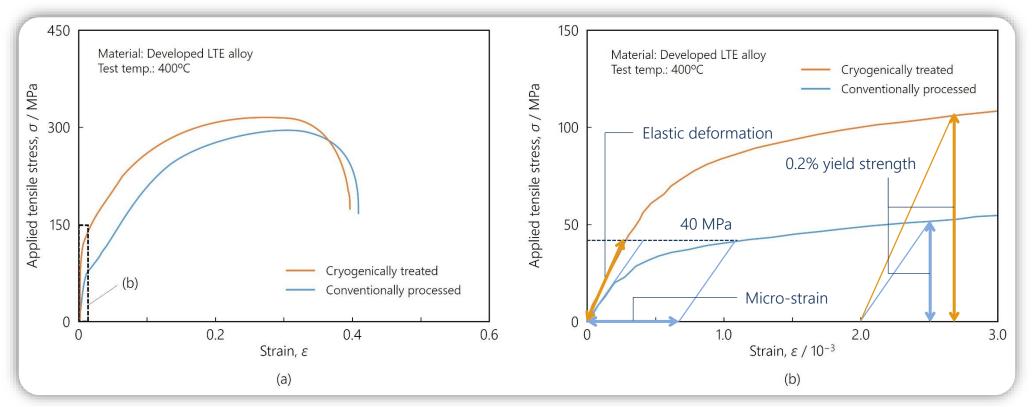
- ✓ By using LTE tooling, the volume fraction ($V_{\rm f}$) of carbon fibers has increased
- When using conventional tool steel tooling, thermal contraction occurs during the temperature decrease from curing to demolding
- ✓ The thermal contraction of the tooling may result in non-uniform stress distribution during molding, leading to the potential for nonuniform carbon fiber density

(b)

(a) Cross-sectional macro photographs of CFRTP specimens press-formed using LTE and conventional tool steel tooling, along with (b) enlarged views of the macro photographs.



Innovative manufacturing process for LTE tooling



Improvement of tooling life through cryogenic treatment

H.T. Fuiii

(a) Comparison of stress-strain curves for low thermal expansion alloy prepared by casting with and without unique thermal treatment, and (b) enlarged view of low-strain region.

Tooling reinforcement is expected to reduce deformation, extend lifespan and enhance precision.

SHINHOKOKU MATERIAL CORP. fujii@shst.co.jp

WE FORM FUTURE

Page 15

Overcoming machinability challenges in LTE tooling

H.T. Fuiii

Drilling test

- ✓ Cutting tool: High-speed steel drill
- ✓ Workpiece: Developed LTE alloy Commercial LTE alloy
- ✓ Machining: Cutting speed 45 m/min Feed rate 0.013 mm/rev Hole diameter *φ*2.6 mm Machining depth 13 mm Machining cycles 100

(a)

(b)

A comparison of tool wear after machining with a high-speed drill on (a) development low thermal expansion alloy (VIC-65) and (b) commercially available low thermal expansion alloy (Kovar)

Page 16

Our innovative alloying technology has significantly improved the machinability of low thermal expansion tooling, addressing their primary weakness.

WEFORM HEURE

Our low thermal expansion tooling significantly improved the molding accuracy of CFRTP compression-formed parts, and the yield strength of the cast tooling were greatly enhanced through cryogenic processing. These findings are expected to make a significant contribution to the advancement of the manufacturing processes for urban air mobility components.

SHINHOKOKU MATERIAL CORP. fuiii@shst.co.ip

